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ABSTRACT

A new tropical cyclone vortex initialization method based on the ensemble Kalman filter (EnKF) is pro-

posed in this study. Three observed parameters that are related to the tropical cyclone (TC) track and

structure—center position, velocity of storm motion, and surface axisymmetric wind structure—are assimi-

lated into the high-resolution Weather Research and Forecasting (WRF) model during a 24-h initialization

period to develop a dynamically balanced TC vortex without employing any extra bogus schemes. The first

two parameters are available from the TC track data of operational centers, which are mainly based on

satellite analysis. The radial wind profile is constructed by fitting the combined information from both the

best-track and the dropwindsonde data available from aircraft surveillance observations, such as the Drop-

windsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR).

The initialized vortex structure is consistent with the observations of a typical vertical TC structure, even

though only the surface wind profile is assimilated. In addition, the subsequent numerical integration shows

minor adjustments during early periods, indicating that the analysis fields obtained from this method are dy-

namically balanced. Such a feature is important for TC numerical integrations. The results here suggest that this

new method promises an improved TC initialization and could possibly contribute to some high-resolution

numerical experiments to better understand the dynamics of TC structure and to improve operational TC model

forecasts. Further applications of this method with sophisticated data from The Observing System Research

and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) will be shown in

a follow-up paper.

1. Introduction

Over the past 30 years, track forecasts of tropical cy-

clones (TCs) have shown steady improvements in accu-

racy, but initializing a realistic vortex at the correct

location with the correct storm motion and structure in the

numerical model still remains a challenging task. A TC

generally spends most of its lifetime over ocean regions,

where conventional observations are sparse, resulting in

uncertainty and poor quality in initial conditions and

leading to errors in numerical simulations and predictions

of TCs. In particular, TC initialization also affects the

evolution of TC intensity and inner-core structure. Some

techniques, including vortex bogusing (Bender et al.1993;

Kurihara et al. 1993, 1995, 1998), bogus data assimilation

(Zou and Xiao 2000; Xiao et al. 2000), and relocation (Liu

et al. 2002), were designed to improve TC initialization

and have produced better simulations of TC movements

and structures.

Taking into account a TC’s feature of highly rotational

and axisymmetric circulations, the conventional vortex

bogusing method generally implants a vortex with some

reasonable structure at the correct location of the model
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initial conditions. Kurihara et al. (1995) had shown that

a better prediction could be achieved by the use of im-

proved initialization procedures that better represent the

initial environment, the vortex-scale flow, and the mass

fields. However, the bogused procedure is rather sub-

jective, and there is no consistent way to implant a bogused

vortex so that it is in good agreement with the observa-

tions. Moreover, apparent initial adjustments often occur

during the spinup period of the numerical integration be-

cause of the dynamical imbalance between the vortex and

the environmental mass field in the model. In the follow-

up to this work, Wu and Huang (2000) showed that nu-

merical simulations of TC track and intensity tend to

contain systematic biases, which also vary with different

initial conditions.

Based on the four-dimensional variational data as-

similation (4D-VAR) framework, Zou and Xiao (2000)

proposed a more advanced TC initialization method,

called bogus data assimilation (BDA). Further studies (Pu

and Braun 2001; Park and Zou 2004; Wu et al. 2006) in-

dicated that the bogus data assimilation could improve TC

forecasting and could show more balanced fields than the

conventional vortex bogusing method. However, the 4D-

VAR calculations take a considerable amount of com-

putation time and may give rise to some computational

problems as the model is unable to find the convergent

solution when the time frame is too long. In addition, the

process of constructing the bogus data remains undeter-

mined.

Considering the use of in situ observations collected

by surveillance missions of Dropwindsonde Observa-

tion for Typhoon Surveillance near the Taiwan Region

(DOTSTAR; Wu et al. 2005), Chou and Wu (2008)

proposed a combined initialization method to include

both bogusing vortex and dropwindsonde data. Their

results showed that the average track and intensity error

rates could be reduced in 10 DOTSTAR missions in

2004.

The above research clearly pointed out that the im-

provement of the initial conditions is crucial for better

simulation or prediction of TCs. For an applicable TC

initialization scheme, two important properties are re-

quired. First, the constructed vortex should be well bal-

anced and dynamically consistent with the numerical

model. Second, the method should be able to effectively

make use of those key parameters observed for TCs. To

meet these two requirements, this study uses a new TC

initialization method based on the ensemble Kalman fil-

ter (EnKF) to construct suitable TC initial conditions for

high-resolution TC simulations. In this paper, the concept of

this method is demonstrated. A companion paper (Wu et al.

2010) will discuss how to assimilate The Observing System

Research and Predictability Experiment (THORPEX)

Pacific Asian Regional Campaign (T-PARC; Elsberry

and Harr 2008) data in a continuous update cycle to

reconstruct the trajectory of TCs and to study the TC

dynamical evolution in more detail.

Regarding the use of the EnKF for TCs, Chen and

Snyder (2007) proposed that the observation of TC posi-

tions from satellite or radar imagery can be assimilated by

the EnKF method in a simple two-dimensional barotropic

model given that an operator computes the position of the

vortex in the background forecast. Chen and Snyder

(2007) further demonstrated that the track initialized with

the EnKF analysis is improved and the spurious transient

evolution of the initial vortex is reduced. The limitation is

that the initial position error has to be comparable to or

smaller than the vortex size; otherwise, the non-Gaussian

effects become significant while the EnKF’s linear update

begins to degrade. However, using the observations from

satellites, radar, and in situ aircrafts, the TC position error

estimated by weather operational centers is about 20 km

(Elsberry 1995). Therefore, with accurate and frequent

TC observations, the background forecast errors can be

limited to a reasonably small range, with acceptable non-

Gaussian effect. In other words, Chen and Snyder (2007)

showed that the EnKF analysis can be a feasible method

to assimilate the TC position data. This was later im-

plemented in a real-data study by Torn and Hakim (2009).

On the other hand, with assimilation of abundant inner-

core observations such as those from Doppler radars,

Zhang et al. (2009) showed that the EnKF can be effec-

tive to initialize a TC even without assimilation of the TC

position data.

Encouraged by the work of Chen and Snyder (2007),

and to help initialize TCs with reasonable track, motion,

and mean structure, this study proposes a new approach

for a TC initialization procedure by constructing three

special observational TC parameters via the EnKF method

in the high-resolution Weather Research and Forecasting

(WRF) model. The three observational parameters are

TC position, the storm motion vector, and the axisym-

metric surface wind structure. As is the case with the TC

observed positions, the storm motion vector is available

from the operational forecast center, which is mainly

based on satellite analyses, while the axisymmetric sur-

face wind structure (radial wind profile) is estimated based

on the wind radii data from operational centers and

the dropwindsonde data, such as those collected in the

DOTSTAR program. The EnKF method and the settings

of the Advanced Research WRF model (ARW-WRF) are

briefly reviewed in section 2. Section 3 describes the de-

signs of three special TC parameters. Section 4 shows the

results of the initialization and simulation of Typhoon

Fung-wong (2008) based on the proposed EnKF method.

Section 5 presents the concluding remarks.
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2. Methodology

a. The EnKF data assimilation method

Evensen (1994) first proposed the ensemble Kalman

filter (EnKF), which is a better alternative to the tradi-

tional Kalman filter because it takes advantage of an

ensemble of model states. As in the traditional Kalman

filter,

K 5 P f HT(HP f HT 1 R)�1 and (1a)

xa 5 x f 1 K(yo � Hx f ), (1b)

where xa is the analysis state vector estimated from the

observations yo and the background forecasts xf in terms

of a weighted proportion that is represented by the

Kalman gain matrix K. The background-error covariance

matrix Pf contains the error covariances of any two ele-

ments of xf, but it is not actually calculated in the EnKF.

Instead, P fHT and HP fHT can be approximated using

sample covariances from the ensemble of model fore-

casts. A complete review of EnKF was documented in

Evensen (2003). The practical implementation in this

study is similar to the square root version of the EnKF

introduced by Whitaker and Hamill (2002). A number of

studies (Snyder and Zhang 2003; Zhang et al. 2004, 2006;

Zhang and Snyder 2007; Fujita et al. 2008; Meng and

Zhang 2007, 2008a,b; Zhang et al. 2009; Torn and Hakim

2009; Yussouf and Stensrud 2010) have showed the po-

tential applications of the EnKF in data assimilation of

mesoscale weather systems, including TCs.

The updated equations of the EnKF are valid under the

assumptions of the infinite ensemble numbers and the

perfect dynamical model. Thus, the insufficiency of en-

semble numbers, poor initial ensembles, and errors of the

numerical model will result in an analysis ensemble with

underestimated error covariances (Burgers et al. 1998).

Covariance inflation is often adopted to magnify the var-

iance among the ensemble members of the EnKF analysis.

In this study, the analysis ensemble deviation is modified

based on the ‘‘covariance relaxation’’ method described by

Zhang et al. (2004):

x9a
(k)new 5 (1� a)x9a

(k) 1 ax9
f

(k), (2)

where the parameter a is between 0 and 1. When the value

of a is larger than 0, the new analysis ensemble deviation

is relaxed toward the prior forecast ensemble deviation

x9
f

(k), which is typically greater than x9a
(k). That is, the co-

variance inflation would become stronger with the in-

crease of the parameter a. This method differs from the

typical covariance inflation method. It shows the advan-

tage that the variance of the analysis is artificially increased

only in the regions influenced by the assimilated obser-

vations. The horizontal covariance localization method is

also used in this study. By multiplying a coefficient that is

computed by using Eq. (4.10) of Gaspari and Cohn (1999),

the analysis increment is gradually reduced and set to 0 at

about 800 km from the TC center.

b. Settings of WRF model and EnKF data
assimilation system

The WRF-based EnKF data assimilation system used in

this study is similar to the system developed in Meng and

Zhang (2008a,b). The ARW-WRF (version 2.2.1) is em-

ployed to conduct the numerical simulation. Figure 1

shows the range of the two nested domains used to per-

form the initialization and forecast experiments of the

demonstrated case, Typhoon Fung-wong, starting from

1200 UTC 25 July 2008. The horizontal grid spacing is

24 km (97 3 79 grid points) for the outer domain and

8 km for the moveable inner domain (58 3 58 grid points).

The model was run with 35 vertical levels (1.0000, 0.9976,

0.9920, 0.9825, 0.9690, 0.9505, 0.9270, 0.8980, 0.8640,

0.8250, 0.7820, 0.7358, 0.6871, 0.6364, 0.5845, 0.5320,

0.4800, 0.4307, 0.3857, 0.3440, 0.3056, 0.2702, 0.2375,

0.2075, 0.1799, 0.1546, 0.1315, 0.1105, 0.0914, 0.0738,

0.0574, 0.0420, 0.0274, 0.0134, and 0.0000) in the terrain-

following sigma coordinate. Note that the two-way vortex-

following nest technique is implemented in both forward

model simulations and in the EnKF update. Following the

TC movement, the moveable inner domain is centered at

the TC to ensure that the high-resolution simulation is in

the TC core region. The initial and boundary conditions

are based on the National Centers for Environmental

FIG. 1. The nested domains in the experiments of Typhoon

Fung-wong. The two squares represent the location and the range

of the moveable inner domain at the starting (2100 UTC 25 Jul) and

ending (1200 UTC 26 Jul) times of the initialization period.
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Prediction (NCEP) final analysis (FNL) and the optimally

interpolated microwave SST (OISST).

The state variables in the WRF model are horizontal

and vertical wind fields (u, y, and w), perturbation po-

tential temperature (u9), perturbation geopotential (f9),

and perturbation dry air mass in a column (m9d). More-

over, six mixing ratios [water vapor (qy), cloud water

(qc), cloud ice (qi), rain (qr), snow (qs) and graupel (qg)]

are also included to correspond to the choice of the

WRF Single Moment (WSM) six-class graupel micro-

physics scheme (Hong et al. 2004; Hong and Lim 2006).

The above state variables will be updated in the EnKF

calculation. Other parameterization schemes used in

the model include the Rapid Radiative Transfer Model

(RRTM) scheme (Mlawer et al. 1997) for longwave ra-

diation, the simple shortwave scheme (Dudhia 1989) for

shortwave radiation, and the Yonsei University (YSU)

planetary boundary layer scheme (Hong et al. 2006). The

cumulus convection is parameterized with the Grell–

Devenyi ensemble scheme (Grell and Dévényi 2002)

only in the coarser (outer) domain.

Taking NCEP FNL at 1200 UTC 25 July 2008 as the

initial ensemble mean, the ensemble members are pro-

duced by randomly perturbing the mean analysis. As in

Meng and Zhang (2008a,b), the initial perturbations are

performed on a transformed streamfunction field in the

WRF variational data assimilation system (WRF-Var;

Barker et al. 2004), and the background error covariances

of WRF-Var are also used. This method guarantees that

the horizontal wind (u and y), temperature (T ), and

pressure perturbations (p9) of the initial perturbation

field are in geostrophic balance (Barker et al. 2003; Zhang

et al. 2006). The other state variables, such as vertical

wind and mixing ratios, are not perturbed here.

3. Descriptions of the three special TC parameters

In this study, three special observational parameters of

TCs are assimilated via the EnKF method: the TC center

position, the storm motion vector, and the axisymmetric

surface wind structure. These three parameters are gen-

erally used to describe the track and structure of a TC but

have not been adopted in the existing TC data assimila-

tion system. A common property of these parameters is

that they are usually obtained by combining different

kinds of observations. Therefore, the adoption of these

parameters as ‘‘observables’’ in data assimilation is not

a straightforward process. In addition, the observation

operators used to convert the model variables to these

three parameters are usually highly nonlinear. However,

in the EnKF method, the ensemble covariance not only

efficiently provides the error covariance of the state

variables, but also allows for the nonlinear observation

operator. Therefore, the above three special observa-

tional parameters can be easily assimilated into the model

by the EnKF technique.

Assimilating the TC center position and the storm

motion vector is assumed to help correct the TC track and

maintain reasonable storm movement. Also, assimilating

the axisymmetric surface wind structure is assumed to

help construct a TC-like vortex with reasonable structure,

although only a one-dimensional wind profile extracted

from a three-dimensional wind field is assimilated here.

It is not difficult to obtain this representative mean profile

despite limited observations. Furthermore, an experi-

ment demonstrated later shows that a reasonable vertical

TC structure can be successfully established through the

assimilation of only these data by the EnKF method.

The detailed usage of the three parameters is described in

the following subsections.

a. TC center position

The observed TC center position of Typhoon Fung-

wong is obtained from the TC position data of the

Central Weather Bureau (CWB) of Taiwan analyzed at

3-h intervals. The cubic spline algorithm is used to in-

terpolate the data into 30-min intervals for the EnKF

update cycle. Considering the operational analysis er-

rors of TC position (Edson and Lander 2003) and the

performances of several EnKF assimilation tests, in this

study the observation errors of the TC location in both

the latitudinal and the meridional directions are set at

20 km at the beginning of the initialization period and

gradually decrease to 13 km by the end [composite TC

location error (i.e., multiplied by square root of 2) is

shown as the dotted line in Fig. 8]. Tests of different

observation errors were conducted, which showed gen-

erally consistent results (figures not shown).

The observation operator used to transfer the geo-

potential height (F) to the TC center on the grid co-

ordinate is shown as

i
TC

5

�
N

n51
w

n
i
n

�
N

n51
w

n

, j
TC

5

�
N

n51
w

n
j
n

�
N

n51
w

n

, (3a)

where w
n

5
hFi � hF

n
i, hF

n
i , hFi

0, hF
n
i $ hFi

(
. (3b)

Here the latitudinal and meridional coordinates of grid

points are represented by i and j, respectively; also, hFi
represents the vertically averaged geopotential height
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from 900 to 700 hPa, and Fh i is the mean of a 300 km 3

300 km square centered at the local minimum of hFni
adjacent to the reference TC center. The weighted sum-

mation is done across each grid point within the above

mean area, but only the positive weights (where hFni is

lower than its areal mean value) are taken into account

[see Eq. (3b)]. The subscript n indicates each grid point

within this area.

b. The storm motion vector

The storm motion vector is derived from the TC center

position associated with both observations and the dy-

namics model based on the same equation:

i9
TC

5
i
TC
� i

TC,prev

Dt
, j9

TC
5

j
TC
� j

TC,prev

Dt
. (4)

Thus, the above equation is used both to calculate the TC

observed position and as the observation operator. The

time interval (Dt) between the latest TC center location

(iTC, jTC) and the previous one (iTC,prev, jTC,prev) is 3 h.

The observation error of the storm motion vector is set to

be a constant of 1.5 m s21, which is based on the per-

formances of several EnKF assimilation tests.

c. The axisymmetric surface wind structure

The axisymmetric surface wind structure of a TC is

usually dictated by its azimuthal mean of the tangential

wind speed. In most of the idealized numerical experi-

ments, as well as in some of the traditional vortex initial-

ization schemes, a (modified) Rankine vortex wind profile

is usually used and bogused to construct the TC structure.

This oversimplified TC structure is considerably dif-

ferent from the real TC in the near-core region, which is

characterized by relatively slow tangential wind decay in

conjunction with a skirt of significant cyclonic relative

vorticity that possesses a negative radial gradient (Mallen

et al. 2005). To find a reasonable axisymmetric mean

wind structure to be assimilated, an empirical formula

from Willoughby et al. (2006) is employed (see the

appendix) in this study.

Based on the information of the analyzed radii of the 34-

and 50-kt winds from the Joint Typhoon Warning Center

(JTWC) best-track database (averaged among four dif-

ferent quadrants if the TC has asymmetric wind radii), and

the in situ 10-m height surface wind from dropwindsonde

data of the DOTSTAR mission, the Willoughby sec-

tionally continuous wind profile [Eqs. (A1)–(A3)] can

be determined [Vmax 5 28 m s21, Rmax 5 45 km, X1 5

480 km, and A 5 0.1 based on all available observations;

n 5 0.729, X2 5 40 km, and R1 5 0.3Rmax based on the

statistics of Willoughby et al. (2006); and R2 is directly

determined by satisfying Eq. (A3)]. The axisymmetric

surface wind structure at 1200 UTC 26 July is shown in

Fig. 2a. Figure 2b shows brightness temperatures from

a polar-orbiting satellite by superposing the flight path

and the deployed locations of the dropwindsondes in

DOTSTAR of Typhoon Fung-wong at 1200 UTC 26

July 2008. The first and last dropwindsondes reached the

surface at 0921 and 1349 UTC, respectively (the sum-

mary of this mission can be found on the DOTSTAR

FIG. 2. (a) The axisymmetric surface wind structure at 1200 UTC

26 Jul of Typhoon Fung-wong calculated by the Willoughby sec-

tionally continuous wind profile (thick solid line; Vmax 5 28 m s21,

Rmax 5 45 km, n 5 0.729, X1 5 480 km, A 5 0.1, R1 5 13.5 km, and

R2 5 59.8 km). The 10-m surface winds from dropwindsonde data

of the DOTSTAR mission are represented by the inverted tri-

angles. The JTWC analyzed the maximum wind. The radii of the

34- and 50-kt wind averaged among four different quadrants are

marked by circles and squares, respectively. Dashed lines represent

the wind profile plus–minus one observation error computed by

Eq. (5). (b) The brightness temperature (K) from a polar-orbiting

satellite, superposing the flight path and the deployed locations

of the dropwindsondes in DOTSTAR of Typhoon Fung-wong at

1200 UTC 26 Jul.
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Web site; see http://typhoon.as.ntu.edu.tw/DOTSTAR/

en/flight.php?id531.) This calculated wind profile is

smoother than the dropwindsonde measurement but

retains the main characteristics of the azimuthal-mean

tangential wind of the real TC.

About 30 samples within the 400-km radius from the

calculated wind profile are assimilated by the EnKF

method. The interval between the two samples is 20 km

for the outer area, and this interval gradually shortens as it

approaches the TC center. The lowest half level of the

WRF model is set at h 5 0.9988, which is equivalent to the

height of about 10 m, for the convenience of constructing

the relevant observation operator (10-m wind). One of

the unique features in this new method is that while the

axisymmetric tangential part of the winds is assimilated,

the nonaxisymmetric part is free to develop in the model

to be dynamically consistent with any environmental

condition (including the asymmetric winds or the back-

ground vertical shear) it is embedded in.

Note that since the method of assimilating the above

mean wind profile is newly proposed, there are no refer-

ences available on how to estimate the observation error

of the azimuthal-mean tangential wind. Here the obser-

vation error of the azimuthal-mean tangential wind is

represented by the empirical formula below:

R
y
(r) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.52 1 f0.4[V(r)]0.7g2

q
. (5)

Note that V(r) is the azimuthal-mean tangential wind from

Willoughby’s sectionally continuous wind profile, and Ry(r)

is the observation error of wind speed at radius r. The

empirical formula suggests that Ry(r) generally increases

with wind speed and reaches a minimum value of 0.5 m s21

when the azimuthal-mean flow is at rest. The power of

0.7 in the formula is arbitrary and its impact on the results

of the data assimilation can be examined in a separate

study. Our current analysis indicates that the currently used

power of 0.7 provides rather reasonable results.

Other than the dropsonde observations, one may adopt

other types of available observations to determine the ra-

dial wind profile, such as satellite scatterometer winds [e.g.,

Quick Scatterometer (QuikSCAT)], flight-level or sea

surface winds from reconnaissance missions, or even

only the limited information provided by operational

centers based on satellite analyses (such as the Dvorak

technique). The procedure to adopt the special TC pa-

rameters for assimilation can be flexible depending on

the characteristics and the accuracy of the observations

that are utilized. It is noteworthy that the observation

error of axisymmetric tangential wind [Eq. (5)] will be

larger when no aircraft observations are available in

most cases during the analysis time.

4. Results

The method proposed above is demonstrated here for

the case of Typhoon Fung-wong (1200 UTC 24 July–

1800 UTC 28 July 2008). Figure 3 provides an example of

the time-by-time procedures. The 28 ensemble members

are generated at 1200 UTC 25 July, which is 24 h before the

initial time of the model forecast. During the incipient 3-h

simulation, only the outer domain is used without any

EnKF assimilation. From 1500 UTC 25 July to 1200 UTC

26 July, the EnKF update cycle is conducted every 30 min

to assimilate the three special TC parameters, while the

moveable inner domain (following the TC center) is acti-

vated at 2100 UTC 25 July. After the 21-h initialization by

the EnKF assimilation, a 48-h forecast of Fung-wong fol-

lows, with a starting time of 1200 UTC 26 July.

Three numerical experiments are implemented to ex-

amine the impact of assimilating the special observational

TC parameters. The control experiment (CTL) assimilates

all of the three special parameters, while ‘‘TK’’ assimilates

only the TC center position and the storm motion vector

and ‘‘NONE’’ denotes the experiment without any data

assimilation performed. For all experiments, the number

of ensemble members is 28, and the covariance relaxation

parameter (a) is 0.8.

a. CTL and NONE experiments

Figure 4a shows the TC tracks from the different en-

semble members during the 21-h initialization of the CTL

experiment. A deviation from the observation track can

be found in the incipient 9 h. After executing several

EnKF update cycles, the mean track is aligned with the

observations and is consistent with the observation track

from 0000 to 1200 UTC 26 July. Note that the initial

condition is obtained from the NCEP FNL, which is a

global model with horizontal resolution of 18 of latitude

by 18 of longitude. Thus, the large shift in the beginning is

likely attributed to the initial location error, plus the in-

correct large-scale steering flow represented in the global

analysis. When the assimilation of TC track and structure

starts, the increments between observations are too large

to obtain an optimized analysis. As a result, it takes sev-

eral update cycles to correct the analysis position (Chen

and Snyder 2007). The surface wind, sea level pressure

FIG. 3. The time-by-time procedures of the initialization of

Typhoon Fung-wong.
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(SLP), and axisymmetric wind structure of CTL at the

beginning (1500 UTC 25 July), middle (0000 UTC

26 July), and final (1200 UTC 26 July) times of the ini-

tialization period are shown in Fig. 5. It can be found that

the low-level circulation of the TC becomes stronger in

time (Figs. 5a,c,e), whereas the radius of the maximum

wind decreases (Figs. 5b,d,f). Furthermore, the mean

surface tangential wind structure gradually approaches

the wind profile derived from the sectionally continuous

wind formula of Willoughby, which fits with the observa-

tions (Figs. 5b,d), especially at the end of the initialization

period (Fig. 5f).

In contrast, without assimilating any special observa-

tional TC parameters, the ensemble tracks of NONE

show large deviations from the observation track, as well

as large spreads (Fig. 4b). By examining the surface wind

and SLP fields (Figs. 6a,c,e), it can be shown that although

the TC intensity increases slowly, the TC structure is not

well organized throughout the initialization period. The

radius of the maximum wind remains unchanged as well

(Figs. 6b,d,f). Note that the difference between the model

and the observed TC intensity remains large at the end of

the initialization period (Fig. 6f).

Figure 7 shows the Hovmöller diagrams (radius–time)

of the average surface tangential wind and the minimum

SLP of both the CTL and NONE experiments during

the initialization period. For the CTL experiment, the

surface winds grow stronger while the radius of the

maximum wind contracts in time (Fig. 7a). The mini-

mum SLP also deepens from 995 to 970 hPa (Fig. 7b),

indicating that the structure of Fong-wong becomes

increasingly organized. In contrast, for NONE, the

surface wind speed only increases slightly during the

initialization period (Fig. 7c), while the minimum SLP

deepens only to 987 hPa (Fig. 7d).

The above results demonstrate that the assimilation

of special observational parameters can significantly

improve track and structure evolution. When only NCEP

FNL and OISST data are adopted as the initial condi-

tions without employing additional data assimilation,

the TC structure and intensity cannot be well devel-

oped during the first 24 h in the high-resolution WRF

model run (i.e., the NONE experiment). However,

through the EnKF method proposed in this study, a

reasonable initial TC vortex can be effectively produced

(i.e., the CTL experiment) and used for the follow-up

simulation.

Note that the track and surface wind variances among

the ensemble members do not expand in time but rather

shrink to nearly a constant during the initialization period

(Figs. 4a and 5b,d,f). This is because the EnKF update

cycle tends to reduce the analysis error covariance. In

other words, through the EnKF method, the special ob-

servational parameters are well assimilated into the WRF

model. The larger minimum SLP variance in the late

initialization period of Fig. 7b is perhaps related to the

nonlinear relationship between the minimum SLP and

TC intensity, as well as to a decoupling between the wind

profile and the TC intensity.

To further examine the characteristics of the ensem-

ble during the assimilation, for the TC position, the

ensemble mean error measured by the distance from the

analysis (forecast) ensemble mean to the observation

and the ensemble spread measured by the sample stan-

dard deviation of the analysis (forecast) ensemble are

calculated by

FIG. 4. The ensemble mean track (thick colored line) and the tracks of ensemble members (thin colored lines)

with the corresponding SLP shown by colors (hPa) during the 21-h initialization of the (a) CTL and (b) NONE

experiments. The thick gray line represents the observation track. Each symbol (crosses and circles) is plotted at

6-h intervals.
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Here, i
a( f )
TC and j

a( f )
TC are the coordinates of the TC

center computed from the model analysis (forecast)

field with the same definition in Eq. (3), while the bar

is used to represent the ensemble mean, and io
TC, jo

TC

are the assimilated observations. Similarly to the TC

position, the ensemble mean error and spread of the

axisymmetric surface wind speed can be calculated by

d
a( f )
wind 5

1

400

ð400

0

d
a( f )
V (r) dr

5
1

400

ð400

0

Vo(r)� Va( f )(r)
������ dr and (8)

FIG. 5. (a),(c),(e) The surface wind (shaded; m s21) and sea level pressure (contour; hPa) of CTL at (a) 1500 UTC

25 Jul, (c) 0000 UTC 26 Jul, and (e) 1200 UTC 26 Jul superposing the observed track (double line and typhoon

symbol) and the model track (thick black line and typhoon symbol) of CTL from the beginning of the initialization.

(b),(d),(f) The corresponding axisymmetric wind profiles of the ensemble mean (thick black line) and each ensemble

member (thin gray lines) of CTL and the observed surface tangential wind structures (double line) at the three times

(m s21).
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Note that the averaged deviation between two wind

profiles is defined by the integration of the differences

along the radius of 0–400 km. Figure 8 shows their

evolution during the assimilation. In CTL, the analysis

and forecast ensemble mean error as well as the spread

all tend to decrease when the EnKF assimilation starts

from 2100 UTC 25 July (Figs. 8a,d). During the last 6 h

of the initialization, the forecast and analysis ensemble

mean errors of the TC position (thin lines in Fig. 8a) are

13.8 and 9.5 km on average, while their spreads (thick

lines in Fig. 8a) are 13.5 and 11.5 km, respectively. For

the axisymmetric surface wind, the forecast and analysis

ensemble mean errors (thin lines in Fig. 8d) are 1.23 and

1.10 m s21 on average, while their spreads (thick lines in

Fig. 8d) are 0.53 and 0.57, respectively, within the last

6 h of the initialization. The above values of errors and

spreads are comparable in magnitude with the given

observation errors. It can also be noted that the values

of analysis errors and spreads (dashed lines) are lower

than those associated with forecasts (solid lines) most

FIG. 6. As in Fig. 5, but for the NONE experiment.
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of the time, which is consistent with the basic concept of

the Kalman filter. In contrast, for NONE, the forecast

ensemble mean errors of both the TC position and the

axisymmetric surface wind are much larger because no

observations have been assimilated during the initiali-

zation (Figs. 8b,e). (The analysis ensemble mean error

in NONE does not exist because no data assimilation is

performed during the initialization.)

b. TK experiment

Considering the impacts of the observational TC pa-

rameters associated with the TC movements, the TK

experiment is conducted for the sole purpose of only as-

similating the TC position and the storm motion vector.

Its simulated track is consistent with the observation

track during the initialization, and the track error is less

than 20 km in the final 6 h (thin lines in Fig. 8c). These

characteristics are similar to the results of CTL. The en-

semble spreads of the TC positions are slightly larger than

in CTL (thick lines in Fig. 8c) but are still within the range

of 30 km in the final 6 h. In contrast, the TC structure is

not well organized until the end of the initialization and

the SLP is only 985 hPa (figures not shown), which is

similar to the results of NONE. Note that the analysis and

forecast ensemble mean errors of the axisymmetric sur-

face wind are almost the same and remain relatively large

throughout the initialization period (thin lines in Fig. 8f).

This means that the assimilation of the TC position and

the storm motion vector does not show any crucial im-

pacts on the near-surface wind field structure.

It is of interest to ask whether the assimilation of the

storm motion vector provides additional impacts. To ex-

amine this, an extra experiment is conducted without as-

similating the storm motion vector. Although the result

FIG. 7. The Hovmöller diagrams of the azimuthal mean of the tangential wind speed (shaded; m s21; the x axis is

radius) and the minimum SLP (hPa) of the ensemble mean (thick black line) and members (thin gray lines) for both

the (a),(b) CTL and (c),(d) NONE experiments during the initialization period.
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(not shown) indicates that the mean position error in the

extra experiment is nearly the same as that in TK, it can be

found that the ensemble spread is larger than that in TK.

Therefore, despite the fact that the assimilation of the

storm motion vector does not directly reduce the position

error, when the assimilation is given frequent position

observations, it shows certain impacts on the model state.

On the other hand, the assimilation of the axisymmetric

surface wind profile changes neither the TC position nor

the mean flow. Unlike other observations, these quantities

do not include latitude/longitude information. Therefore,

these observations can only correct the structure of the

TC, and their impact on TC tracks is also assumed to be

minimal. However, in practice, if the TC location is not

assimilated, the TC centers of each ensemble member

tend to spread out quickly. As a result, it is technically

difficult to calculate the average tangential wind profile

corresponding to a fixed center position.

c. Vertical structure

The vertical structures of the three experiments at the

end of initialization are shown by their cross sections of

the wind, potential vorticity, and potential temperature

fields across the storm center (Fig. 9). In CTL (Fig. 9a), the

inner core structures are well established, while the max-

imum potential vorticity is located at the TC center and

the warm-core structure is shown in the middle to upper

levels. The surface wind flows inward and ascends upward

slantwise to construct the secondary circulation of the TC.

By contrast, in NONE and TK (Figs. 9b,c), the secondary

circulations are asymmetric, while the potential vorticity

and warm-core structure are not apparent.

These vertical structures indicate that even though

only surface wind data on a single level are assimilated,

a reasonable three-dimensional vertical TC structure

can be successfully established by the EnKF method. It

is believed that both the data assimilation itself and the

subsequent model integration play some role in building

up the model vortex and the upper-level warm-core

structure. To evaluate the relative contribution of these

two effects, the time evolutions of 500-hPa tempera-

ture perturbations in the TC center (the difference to the

400-km-radius azimuthal mean) before and after the

data assimilation are plotted in Fig. 10. After some in-

cipient undulations, the warm anomaly in the TC center

strengthens gradually (Fig. 10a). The increment due to

FIG. 8. The ensemble mean error (thin lines) and spread (thick lines) of (a)–(c) the TC center position (km) and (d)–(f) the axisymmetric

surface wind profile (m s21) for the (a),(d) CTL, (b),(e) NONE, and (c),(f) TK experiments. For both thin and thick lines, all solid lines

denote those in background forecasts, and all dashed lines denote those in analyses after the EnKF update. The observation errors used in

the assimilation are represented by dotted lines.
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the data assimilation (difference between the analysis

and background forecast fields; dashed line in Fig. 10b)

is generally positive after 1900 UTC 25 July, indicating

that the assimilation of the surface wind profile directly

results in an increase of the upper-level temperature

field. However, the increment after the 30-min model

integration (difference between the model forecasts and

the analyses in the previous update cycle; solid line in

Fig. 10b) also has some significant impacts, suggesting

that the changed fields in the previous EnKF update

cycle can also influence the warm core structure through

the following model integration.

d. Forecast results

After the initialization period in CTL, the 48-h model

forecast is started from 1200 UTC 26 July. Figure 11

shows the ensemble forecast tracks during both the ini-

tialization and the forecast periods of CTL. It can be

found that the variance among the ensemble members

increases gradually during the forecast period, indicating

the uncertainty range of the track forecasts. Despite the

effective track assimilation during the initialization pe-

riod, in this particular case the storm deflects to the north

during the initial 18 h of the forecast period (1200 UTC

26 July–0600 UTC 27 July). Note that in this study other

available data (such as conventional rawinsondes) have

not been used during the 24-h assimilation period, thus

somehow resulting in partial loss of the forecast skill. This

is probably one of the major reasons why even though the

initial condition has been improved through the three

parameters, the later forecast in CTL is not much better

when compared to that in NONE (not shown). In com-

panion works (Wu et al. 2010; Huang et al. 2010), both the

special TC parameters and conventional rawinsonde and

dropwindsonde data for Typhoon Sinlaku (2008) during

T-PARC are assimilated to keep updating the environ-

mental information.

As for the intensity forecast of Typhoon Fung-wong,

Fig. 12 is the minimum SLP at the storm center and the

maximum sea surface wind speed during the 48-h forecast

from the ensemble mean. It shows that during the first few

hours, the TC intensity of CTL is not only close to the

observations, but also fairly steady without any spurious

adjustments, implying that the model initial condition con-

structed by the EnKF method is well balanced and dy-

namically consistent with the model. It is interesting to note

that the simulated intensity matches well with the analysis

data of CWB during the most intense phase around 27 July,

yet the minimum SLP is off by about 20 hPa. This incon-

sistency may be due to the uncertainty in the wind and

pressure analyses in the CWB data. The initial TC inten-

sity of NONE is much weaker than the observations but

also reaches an intensity level nearly equivalent to that of

FIG. 9. West–east section through the storm center of horizontal

wind speed (shaded; m s21), potential vorticity (solid contour;

PVU), potential temperature (dashed contour; K) and vertical

circulation (arrows) of the ensemble mean for the (a) CTL, (b)

NONE, and (c) TK experiments.
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the CTL during later periods. Nevertheless, the variables

affecting the evolution of simulated TC intensity are quite

numerous and complicated. These additional issues related

to forecast performance are equally important but beyond

the scope of this study, which focuses primarily on this new

TC initialization method.

e. Sensitivity experiments

Many factors (such as the resolution of the model, the

number of ensemble members, and the covariance in-

flation) can have impacts on the results of the EnKF as-

similation (Zhang et al. 2006). It is believed that the

optimal settings of these factors depend on properties of

different models and the specific purpose of data assimi-

lation. Regarding the TC initialization in this study, the

impacts of different settings on the EnKF are evaluated by

a series of sensitivity experiments. For each experiment,

instead of showing detailed figures, several key quantities

are averaged over the final 6 h of the initialization period.

The key quantities include the forecast ensemble mean

errors and spreads of the TC center position and the

axisymmetric surface wind profile, which are shown to

assess the performance of the EnKF initialization. The

relative differences of these quantities compared to the

CTL quantities in percent are listed in Table 1. The results

of NONE and TK are also listed for reference.

With regard to the domain resolution, in the LOW ex-

periment, only the coarse domain (24-km grid spacing) is

used. The results show that the TC center location cannot

be accurately assimilated, and thus the average forecast

position error in the final 6 h of the initialization period in-

creases by 77%. This demonstrates that correctly resolving

the storm center position and the TC inner core struc-

ture is important. In contrast, in the HIGH experiment,

an extra movable inner domain is added with a resolution

of 2.67 km. More reasonable initial TC fields can be estab-

lished in this experiment as compared to those in LOW and

CTL, although more computational resources would be

needed. Compared to the results in CTL, the average fore-

cast position error slightly decreases by 4% in HIGH,

whereas the average error of the forecast axisymmetric

surface wind profile decreases considerably by 39%. As

for the ensemble size tests, when using only 10 ensemble

members (SMALL), it can be found that the ensemble

mean error of the axisymmetric surface wind profile is

larger (64% increase) and the position of the TC center

moves irregularly (figures not shown). In contrast, when the

ensemble size is doubled to 56 (BIG), the ensemble mean

errors are reduced much faster than the errors in CTL

(figures not shown), indicating that less integration time is

needed to make the analysis field closer to the observations.

However, in the final 6 h of the initialization period, when

compared with CTL, BIG only leads to a 12% reduction in

the average forecast position errors. The sensitivity tests

of the covariance relaxation parameter (a) show that

FIG. 10. (a) The time evolutions of 500-hPa temperature per-

turbations (K) in the TC center (the difference to the 400-km-

radius azimuthal mean) in background forecasts (solid line) and in

analyses after the EnKF update (dashed line) during the initiali-

zation period. (b) As in (a), but for the difference between the

analyses and background forecasts (the increment by the data as-

similation; dashed line) and for the difference between the model

forecasts and the analyses in the previous update cycle (the in-

crement by 30-min model integration; solid line).

FIG. 11. As in Fig. 4a, but for both initialization and forecast

periods (1200 UTC 25 Jul–1200 UTC 28 Jul). The ensemble mean

TC location at the initial time of the forecast (1200 UTC 26 Jul) is

marked by the black ‘‘X’’.
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reducing the value of a to 0.5 (ALPHA_0.5) cannot ef-

fectively prevent the excessive decrease of the background

error covariance and thus leads to a continually low

background error covariance (37% decrease in terms of

position and 20% decrease in terms of axisymmetric

surface wind profile). In contrast, the overestimated co-

variance inflation (ALPHA_0.95; by setting a 5 0.95) di-

minishes the impact of the observations on the ensemble

spread so that the background error covariance increases

by 57% in terms of position and by 40% in terms of the

axisymmetric surface wind profile. Meanwhile, the un-

reasonable increase of the ensemble variance would result

in significant undulations of the analysis error in the EnKF

assimilation.

5. Concluding remarks

A new TC initialization method based on the EnKF is

proposed in this study, which is different from the con-

ventional methods of TC initialization (vortex bogusing,

bogus data assimilation, and relocation). Three new ob-

servation operators related to the TC track and structure—

center position, velocity of storm motion, and surface

axisymmetric wind structure—are used to construct a rea-

sonable initial vortex in the high-resolution WRF model.

This innovative method meets two important require-

ments of TC initialization. First, the constructed vortex is

well balanced and dynamically consistent with the numer-

ical model. Second, the special observational TC parame-

ters are effectively assimilated during the initialization.

The results of the initialization and simulation of the

EnKF method are demonstrated in the case of Typhoon

Fung-wong, with 28 ensemble members used in numerical

experiments to examine the impacts of assimilating the

special observational TC parameters. It is shown that the

assimilation of the three special observational parameters

can significantly improve the track and structure evo-

lution of the TC during the initialization. At the end of

the initialization period, a reasonable initial TC vortex is

produced and can be used for follow-up simulations. In

contrast, when only NCEP FNL and OISST data are

adopted as the initial condition without conducting the

data assimilation, the TC structure and intensity is not well

developed during the first 24 h in the high-resolution WRF

model run. If only the observational TC parameters as-

sociated with the TC movements are assimilated (i.e.,

without assimilating the mean tangential wind structure),

the simulated track is consistent with the observation track

during the initialization, but there is very little improve-

ment on the TC structure. Furthermore, our experiments

indicate that even when only surface wind data on a single

level are assimilated, a reasonable three-dimensional

vertical TC structure with the classic in–up–out secondary

circulation can be successfully established by the EnKF

method.

The impacts of different settings on the EnKF TC ini-

tialization, such as the resolution of the model, the number

of the ensemble members, and the covariance inflation, are

FIG. 12. The CWB observations (dashed lines) and 48-h forecast

from the ensemble mean of CTL (solid lines) and NONE (dotted–

dashed lines) of (a) the minimum SLP at the storm center and (b)

the maximum sea surface wind speed of Typhoon Fung-wong. Both

the minimum SLP and maximum sea surface wind speed are

plotted at 30-min intervals.

TABLE 1. The average forecast ensemble mean errors and spreads of the TC center position and the axisymmetric surface wind profile

during the final 6 h of the initialization period. For CTL, the actual values are listed below in boldface. For other sensitivity experiments,

the relative differences as compared to CTL in percent are listed below.

CTL

NONE

(%)

TK

(%)

LOW

(%)

HIGH

(%)

SMALL

(%)

BIG

(%)

ALPHA_0.5

(%)

ALPHA_0.95

(%)

Position error (km) 13.8 1300 27 177 24 164 212 212 227

Position spread (km) 13.5 1304 188 225 17 222 112 237 157

Wind prf. error (m s21) 1.23 1378 1319 152 239 114 11 124 18

Wind prf. spread (m s21) 0.53 1139 143 217 132 217 16 220 140
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studied through a series of sensitivity experiments. As ex-

pected, the higher-model-resolution run can lead to more

reasonable TC initial fields although more computational

resources would be needed. Regarding the impact of the

ensemble size, it is found that the ensemble mean error of

the axisymmetric surface wind profile is larger and the

position of the TC center moves irregularly when the en-

semble size is too small. In addition, the optimal value of

the covariance relaxation parameter (a) in this study is

found to be around 0.8. However, it is believed that the

optimal settings of these factors might be dependent on

properties of different models and the purpose of each data

assimilation.

In all, a new method in improving the TC initializa-

tion based on the EnKF data assimilation is designed.

By the EnKF method, the ensemble run of the forward

nonlinear model is considered as the flow-dependent

background error covariance. Many studies, such as

Kalnay et al. (2007), proposed that the EnKF is com-

parable to 4D-VAR. However, constructing the highly

nonlinear observation operator like these special TC

parameters in 4D-VAR is not a simple task. This study

demonstrates that the EnKF is an efficient method that

makes use of available data to improve the initializa-

tion of TCs in terms of track, motion, and mean

structure. Tests of this method on other stronger TCs

such as Typhoon Sinlaku (2008), Krosa (2007), and

Sepat (2007) have produced similar results, provided

there are sufficient model resolution and spinup time.

In particular, this method provides a unique opportu-

nity to study detailed structure evolution of TCs in

a high-resolution numerical model, especially when

abundant data around and inside of the TC core are

available. In follow-up studies (Wu et al. 2010; Huang

et al. 2010), the method is applied to Typhoon Sinlaku

(2008) during T-PARC, in which detailed eyewall

evolution processes are examined.
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APPENDIX

Mean Vortex Structure of Willoughby et al. (2006)

Based on 493 observed profiles, Willoughby et al.

(2006) proposed sectionally continuous profiles where

the wind strengthens as a power of radius inside the eye

and weakens exponentially outside the eye after a smooth

polynomial transition across the eyewall. The formulas

used to describe the wind profile in Willoughby et al.

(2006) are shown below.
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Here, Vi and V0 are the tangential winds inside the eye

and beyond the transition zone; Vmax and Rmax are the

maximum wind and radius where the maximum wind

occurs; n is the exponent for the power law inside the

eye; and X1 and X2 are the exponents with e-folding

lengths in the outer vortex, where the parameter A sets

the proportion of the two exponents in the profile. In the

transition zone, the weighting function w is used to ramp

up smoothly from zero to one between R1 and R2. The

extent of the transition zone is determined by satisfying

the conditions shown in (A3) to assure that the maximum

wind is located exactly at Rmax. Following the statistics of

Willoughby et al. (2006), the fitting algorithm in this study

starts with X2 5 40 km, R1 5 0.3Rmax, and

n 5 0.4067 1 0.0144V
max
� 0.0038u (A4)

to eliminate the insignificant variables, where u is the

latitude (8) of the TC.
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