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ABSTRACT 

As synoptic storms, tropical cyclones (TCs) are highly nonlinear systems resulting from 

multiple scale interactions. In particular, the formation/genesis of TCs involves complex 

nonlinear processes, exhibiting strong internal variability in climate model simulations. This 

study attempts to examine such internal variability of dynamically downscaled TCs over the 

western North Pacific (WNP) based on four simulations of 20 typhoon seasons (1982−2001) 

initialized on four successive days using the International Pacific Research Center (IPRC) 

Regional Climate Model (iRAM). The results show that on both seasonal and interannual 

timescales, the initial conditions significantly affect the downscaled TC activity, with the 

largest internal variability occurring in August on the seasonal timescale. The spreads 

between any of the individual simulations and the ensemble mean are comparable to and in 

some circumstances greater than the interannual variation of the observed TC frequency. The 

internal variability of the downscaled TC activity is found to be insensitive to the amplitude 

and the pattern of the initial perturbations. However, day-to-day model solutions are strongly 

affected by the internal variability. As a result, the development of nonlinear atmospheric 

instabilities significantly modulates the genesis and development of the TC-like vortices, 

leading to the large internal variability of the downscaled TC activity. In addition to the 

traditional initial value problem, criteria (in particular, threshold values) used in the TC 

detection contribute equally to the internal variability of the downscaled TCs in the 

simulations. Consistent with earlier studies, our results also show that the ensemble mean 

provides the better downscaled information on seasonal and interannual frequencies of TC 

genesis and occurrence. 
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1. Introduction 

High-resolution regional climate models (RCMs) have been widely used for dynamical 

downscaling of seasonal climate prediction and future climate projection in the last decades 

since the first successful demonstrations of regional climate modeling by Dickinson et al. 

(1989) and Giorgi and Bates (1989). Given detailed representations of physical processes, 

and high spatial resolution that resolves complex topography, land-sea contrast, and land use, 

an RCM driven by large-scale forcing can generate realistic regional climate information. It 

not only retains most of the large-scale information that can be appropriately resolved by the 

reanalysis or the general circulation models (GCMs), but also provides fine-scale details that 

could not be generated by the coarse-resolution reanalysis or GCMs. RCMs have proven to 

be a powerful tool in the dynamical downscaling for climate change and seasonal climate 

prediction and in regional climate process studies (see a review by Wang et al. 2004).  

An important application of RCMs is to dynamically downscale the tropical cyclone (TC) 

activity. A number of studies have examined the ability of RCMs to improve the skills of the 

GCM in simulating the seasonal TC activity (e.g., Walsh and Syktus 2003; Landman et al. 

2005; Camargo et al. 2007; Feser and Storch 2008). These studies have shown that RCMs 

can produce more realistic seasonal TC activity than a coarse-resolution GCM although the 

simulated TC intensity is still weaker than that observed. RCMs have been successfully 

utilized to improve our understanding of the factors controlling TC activity as well (e.g., 

Nguyen and Walsh 2001; Knutson et al. 2007; Zhan et al. 2011a). For example, using the 

International Pacific Research Center (IPRC) regional atmospheric model driven by the 

reanalysis and the observed sea surface temperatures (SSTs), Zhan et al. (2011a) discussed 
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the impact of SST anomaly (SSTA) in the East Indian Ocean (EIO) on the TC frequency over 

the western North Pacific (WNP) and the involved physical mechanisms proposed by Zhan et 

al. (2011b). More studies have focused on the influence of global warming on future TC 

activity in different ocean basins using high-resolution RCMs driven by the output of GCMs 

(e.g., Nguyen and Walsh 2001; Walsh et al. 2004; Stowasser et al. 2007; Knutson et al. 2008). 

RCMs are shown to be able to obtain the quantitative projections of TC activity at higher 

resolutions than GCMs and with dedicated physics adapted to the basin of interest. 

Similar to GCMs, RCMs are subject to different sources of errors/uncertainties: the 

parameterizations of physical processes, the initial conditions, the numerical algorithms, 

surface forcing, etc. Since RCMs are run over limited-area domains and are driven by 

time-dependent large-scale meteorological fields specified in a buffer area adjacent to the 

domain’s lateral boundaries, RCMs have one additional source of error related to their lateral 

boundary conditions (LBCs) (Warner et al. 1997). Many efforts have been made to examine 

the influence of the LBCs on the uncertainty in RCM simulations (Seth and Giorgi 1998; 

Nutter et al. 2004; Wu et al. 2005; Nicolis 2007; Vanvyve et al. 2008). These studies 

generally suggested that the LBC is critical to skillful long-term regional climate simulations. 

Landman et al. (2005) investigated the impact of the RCM domain choice on the simulation 

of TCs over the southwestern Indian Ocean and suggested that careful consideration of 

domain choice and the location of the lateral boundaries are essential to the simulated 

seasonal TC activity.  

Compared to the pronounced impact of the LBCs, small perturbations in the initial 

conditions do not appear to significantly change the RCM solution (Giorgi and Bi 2000; 
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Vannitsem and Chome 2005; Wu et al. 2005; Vanvyve et al. 2008). Some previous studies 

have suggested that the signal representing internal variability induced by initial conditions 

weakens with time and thus the confidence in the simulations increases with the duration of 

the simulation (Wu et al. 2005; Vanvyve et al. 2008). However, the model internal variability 

can be in some circumstances as large as or larger than the signal induced the external 

forcings (e.g., Weisse et al. 2000; Christensen et al. 2001). For example, Weisse et al (2000) 

found that the impact of the sea state–dependent roughness on the atmospheric circulation 

appeared to be hidden by the internal variability of the model when the internal variability 

was high. In addition, some studies revealed that the RCM internal variability depends 

heavily on synoptic events and variables (Christensen et al. 2001; Caya and Biner 2004; 

Alexandru et al. 2007). This is consistent with the findings of Giorgi and Bi (2000), who 

demonstrated that the day-to-day model solutions are affected by the internal variability 

although the domain-wide statistics are not. As synoptic storms, TCs are highly nonlinear 

systems, and their genesis involves strong multiscale interactions. Dynamical simulations of 

TC activity by an RCM are thus likely sensitive to small changes in the initial conditions, 

even if the RCM is constrained by the same LBCs. In this sense, the downscaled TC activity 

on seasonal time scale in an RCM may be subject to strong internal variability. Therefore, it 

is necessary to evaluate the uncertainty associated with internal variability when we 

dynamically downscale TC activity on seasonal time scale.  

In this study, four simulations for 20 typhoon seasons (1982−2001) with varying initial 

(successive) dates are conducted to examine the internal variability of dynamically 

downscaled TCs over the WNP using the IPRC regional atmospheric model (iRAM). It 
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should be mentioned that four members are not enough to thoroughly address the internal 

variability issue. Therefore, this work can be regarded as a pilot study to demonstrate the 

importance of this issue and to promote further efforts toward improved understanding of the 

internal variability of the dynamically downscaled TC activity. Nevertheless, we will show 

that the 4-member ensemble can provide the better downscaled information on seasonal and 

interannual frequencies of TC genesis and occurrence than any individual member. The rest 

of the paper is organized as follows. Section 2 provides a brief description of the model, 

experimental design, the datasets, and the analysis methods. Section 3 evaluates the 

performance of the dynamically downscaled large-scale features and TC climatology from 

four ensemble simulations and the ensemble mean. The internal variability of the downscaled 

WNP TCs is presented in section 4. The sources of uncertainties are discussed in section 5, 

focusing on the downscaled TCs themselves and the fields at different horizontal scales. A 

case study for a year with the largest variance is analyzed in section 6. The main conclusions 

are drawn in the last section together with a brief discussion. 

2. Model description, experimental design, data, and analysis methods 

a. Model description 

The regional climate model iRAM developed at IPRC, University of Hawaii (Wang et al. 

2003) was used in this study. It has been applied to the studies of dynamically downscaled TC 

activity (Stowasser et al. 2007; Zhan et al. 2011a) and other regional climate modeling efforts 

(Wang et al. 2007). The model uses hydrostatic, primitive equations in spherical coordinates 

with sigma (pressure normalized by surface pressure) as the vertical coordinate. The model 

equations are solved with a fourth-order conservative horizontal finite differencing scheme 
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on an unstaggered longitude–latitude grid system. The time integration is performed using a 

leapfrog scheme with intermittent application of an Euler backward scheme. The model 

physics include the cloud microphysics scheme of Wang (2001); a mass flux scheme for 

subgrid shallow convection, midlevel convection, and deep convection developed by Tiedtke 

(1989) with some modifications outlined in Wang et al. (2003, 2004, 2007); the radiation 

package developed by Edwards and Slingo (1996) and further improved by Sun and Rikus 

(1999); the Biosphere–Atmosphere–Transfer Scheme (BATS) developed by Dickinson et al. 

(1993) for land surface processes; a modified Monin–Obukhov similarity scheme for flux 

calculations at the ocean surface; and a nonlocal E–ε turbulence closure scheme for 

subgrid-scale vertical mixing (Langland and Liou 1996), which was modified to include the 

effect of cloud buoyancy production of turbulence kinetic energy (Wang 1999). A one-way 

nesting is used to update the model time integration in a buffer zone near the lateral 

boundaries within which the model prognostic variables are nudged to reanalysis data with an 

exponential nudging coefficient proposed by Giorgi et al. (1993) and later modified by Liang 

et al. (2001). The buffer zone is 5° in extent. More details of the model can be found in Wang 

et al. (2003, 2004, and 2007).  

The model domain in this study covers the South China Sea (SCS) and the WNP, 

extending from 20°S to 59.8°N, 100°E to 160°W with a grid spacing of 0.2° in both zonal 

and meridional directions. The model has 28 vertical levels with relatively higher resolution 

in the planetary boundary layer. The lowest model level is roughly 35 m above the surface. 

The initial and lateral boundary conditions for iRAM were constructed using the 

NCEP/NCAR reanalysis (Kalnay et al. 1996), available at 2.5° × 2.5° horizontal resolution 
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with 17 vertical pressure levels at 6-h intervals. SSTs were obtained from the Reynolds 

weekly SST data at 1° × 1° horizontal resolution (Reynolds et al. 2002), interpolated onto the 

model grids by cubic spline interpolation in the horizontal and linear interpolation in both the 

vertical and time.  

b. Experimental design 

Four simulations were conducted with slightly different initial conditions, as shown in 

Table 1. They were initialized at 00 UTC on four successive days from 28 June to 1 July of 

each year and were run until 18UTC 31 October for 20 typhoon seasons from 1982 to 2001. 

The 6-hourly outputs from each experiment were analyzed for the typhoon season from 00 

UTC 1 July through 18 UTC 31 October. Previous studies have shown some initial shock in 

the simulation and suggested a need to exclude the analysis for the spin-up time period. For 

example, Giorgi and Mearns (1999) presented the spin-up time of about 10 days for 

atmospheric fields. Note that the spin-up of the atmospheric processes is relatively much 

faster than that of the land surface processes. Since our model domain covers mainly the 

ocean areas, the spin-up could not be a serious problem as found for simulations of regional 

climate over land areas. We therefore ignored the effect of the spin-up time in this study. 

All simulations shared exactly the same LBCs for the atmospheric fields and the same 

prescribed SST. The only difference is the one-day delay of the model initial time, and thus 

differences among these simulations would be considered as a result of small changes in the 

initial conditions.  

Note that the control of large-scale motion on the regional simulation is purely through 

the lateral boundary conditions in our simulations. Although previous studies have shown the 
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improvements in the downscaled TC climatology and interannual variability with the use of 

some spectral nudging technique (e.g., Knutson et al. 2007, 2008; Bender et al. 2010), the 

spectral nudging would reduce the internal variability considerably (nevertheless, the 

simulations could be very sensitive to the nudging time scale as well, Knutson et al. 2007). 

Therefore, similar to Alexandru et al. (2007), the spectral nudging was not considered in our 

simulations in order to appreciate the internal variability in both the basic state and the 

synoptic scale motions. 

c. Data 

The best track TC data (6-hourly position and intensity) were obtained from Shanghai 

Typhoon Institute of China Meteorological Administration (CMA). The CMA best track data 

for the WNP started from 1949, but the period 1982−2001 was used in this study to verify the 

model simulations for the same period. In addition, we only considered TCs that reached at 

least the tropical storm (TS) intensity (with maximum sustained wind speed Vmax ≥17 m s-1). 

The atmospheric fields from the model were compared with the NCEP/NCAR reanalysis.  

d. Criteria for identifying TCs 

The method for detecting and tracking the model TCs is similar to that used in earlier 

studies by Nguyen and Walsh (2001) and Stowasser et al. (2007) with some modifications for 

our model resolution. With 6-hourly model outputs, the following criteria are set for a system 

to be identified as a tropical storm in our simulations: 

1) There must be a relative vorticity local maximum exceeding 5 × 10-5 s-1 at 850 hPa. 

2) There must be a local minimum in sea level pressure (SLP) within a distance of 4° 

latitude or longitude from the vorticity maximum; this minimum pressure is defined as 
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the center of the model storm.  

3) The azimuthal mean tangential wind speed at 850 hPa must be higher than at 300 hPa. 

4) The closest local maximum in temperature averaged between 500 and 200 hPa is 

distinguishable and is defined as the center of the warm core. The distance between the 

center of the warm core and the center of the storm must not exceed 2.5° latitudes. From 

the center of the warm core the temperature must decrease by at least 0.5°C in all 

directions within a distance of 7.5°. 

5) The storm must form at latitudes south of 35°N. 

To be considered as a model tropical storm trajectory, a storm must last at least 2 days 

and have a maximum wind speed of over 17 m s-1 at the lowest model level during at least 2 

days (not necessarily consecutive). For each storm snapshot, it is checked whether there are 

storms during the following 6-h period within a distance of 300 km south of 25°N or 600 km 

north of 25°N. If there is none, the trajectory is considered to discontinue. If any is present, 

the closest storm is designated to have the same trajectory as the initial storm. Cases 

satisfying all these criteria are referred to as TCs in this study. 

e. Evaluation methods 

Following Alexandru et al. (2007), the internal variability of the downscaled fields in this 

study is measured by the spread among the ensemble members during the simulation period, 

using the root-mean-square error (RMS) between the four simulations and the ensemble mean, 

where RMS is estimated by 

RMS = ∑ =
−

M

m m XX
M 1

2][1                  (1) 

The term Xm refers to the value of a variable X for member m in the ensemble and M is the 
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total number of ensemble members (4 in this study). The term 〈X〉 is the ensemble mean 

defined as  

∑ =
=

M

m mX
M

X
1

1                           (2) 

To separate the contributions by different horizontal scales to the error growth, the RMS2 

is divided into two components by partitioning the variable X into a large-scale variable X  

and a small-scale variable X′ as 

'222 RMSRMSRMS +=                          (3) 

where X  is obtained by calculating running means over grid boxes, X′ is the deviation of  

X from X , and 2RMS  and '2RMS  are defined as the standard deviation of X  and X′, 

respectively. 

These statistics are evaluated in different time intervals. When examining the relations 

between large-scale fields and TC frequency in terms of internal variability, we focus on SLP 

since a TC system can be tracked in SLP field more directly and easily than other variable in 

the model output. 

3. Large-scale features and TC climatology 

We begin with evaluation of the simulated climatological large-scale features in the 20-yr 

typhoon seasons to verify the performance of iRAM. Figure 1 shows the climatological mean 

SLP and 850 hPa relative vorticity fields from both simulations and NCEP reanalysis. The 

low-level vorticity field in the reanalysis shows a northwest-southeast-elongated positive belt 

extending from the SCS to the WNP between 5°N and 20°N with the maximum center over 

the SCS and negative vorticity on both sides of the positive belt. The positive vorticity belt is 

associated with the monsoon trough, a vital factor for TC genesis in the region (Holland 
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1995). The negative vorticity to the north is associated with the western North Pacific 

subtropical high, which plays an important role in controlling TC motion in the basin. These 

two main features are also shown in the long-term mean SLP field and are well captured by 

the model in all individual simulations and the ensemble mean, although the centers over the 

SCS and the western WNP are stronger in the simulations than in the reanalysis, especially 

for the one over the SCS. 

Figure 2 shows the climatological mean vertical wind shear between 850 hPa and 200 

hPa and 700 hPa specific humidity fields from the simulations and the NCEP reanalysis. The 

reanalysis exhibits large values of humidity and easterly vertical wind shear around the 

monsoon trough region. Both the pattern and magnitude of the vertical wind shear are very 

well reproduced in all simulations. In addition, the specific humidity pattern in the 

simulations is in good agreement with the reanalysis throughout most of the domain. 

However, the model humidity is higher than that in the reanalysis. This could be partly due to 

the dry bias over the warm ocean in the NCEP reanalysis (Bony et al. 1997) since the 

magnitude of the model specific humidity is generally comparable to the European Center for 

Medium Weather Forecast (ECMWF) reanalysis (ERA40, not shown), and partly due to the 

cumulus parameterization scheme used in the model. Nevertheless, overall, the iRAM forced 

by the reanalysis can capture reasonably well the large-scale features in the WNP. Note that 

four simulations show almost consistent distributions in the climatological mean fields, 

suggesting that the large-scale climatological features are not significantly affected by the 

internal variability in the simulations. The result is in general agreement with previous studies 

(e.g., Giorgi and Bi 2000). 
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Stowasser et al. (2007) and Zhan et al. (2011a) have demonstrated that the iRAM with a 

grid spacing of 0.5° in both zonal and meridional directions can reproduce reasonably well 

the climatology of the observed TC behavior over the WNP. Here, a higher resolution of 0.2° 

in both zonal and meridional directions is used. We first focus on the TC climatology from 

simulations with different initial conditions. As in Stowasser et al. (2007) and Zhan et al. 

(2011a), the frequencies of  TC genesis and occurrence in the 20 typhoon seasons are 

calculated in each 5° longitude by 5° latitude grid box.  

Figure 3 shows the spatial distributions of TC genesis frequencies for the typhoon 

seasons during 1982−2001 from the simulations and the CMA best track data. The TC 

genesis location in the simulations resembles that observed, with a maximum band of TC 

formation between 5°N and 25°N where the monsoon trough exists and three local maxima 

are located, respectively, in the SCS, around 130°E, and between 140°E and 160°E. 

Compared to the observation, however, the second maximum is weaker, and the third 

maximum is located too far to the east in the simulations.  

TC occurrence is also called TC passage, which is calculated at 6-hour interval and 

measures how frequently TCs affect a grid box of 5° longitudes by 5° latitudes in this study. 

The maximum frequency of occurrence is used to infer the prevailing TC tracks. The 

geographical distribution of the TC occurrence frequency is also reasonably simulated (Fig. 

4). The simulated TCs most frequently occur at the same latitudes from the SCS to 160°E as 

observed. However, there is a positive bias over the SCS in all simulations. This might be to 

the overly strong monsoon trough and the associated low-level cyclonic circulation simulated 

in that region (Fig. 1), which could lead to the excessive TC genesis and the TC track change. 
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A similar bias has reported in Zhan et al. (2011) with the western boundary of the model 

domain extended to 70oE. Another bias is the underestimated frequency of occurrence north 

of 25°N in the simulations, notably over Korea and Japan and east of the Japan Main Island. 

As mentioned in Zhan et al (2011a), this discrepancy might be associated with the deficiency 

in the TC detection algorithm, which excludes the extratropical transitions of any tropical 

systems since any detected systems with a warm core more than 2.5° away from the surface 

center are excluded from the tropical storms in the simulations.  

Note that the differences in the TC genesis frequencies near the three local maxima 

among the simulations are not negligible, although the general patterns are quite similar. The 

simulated centers in TC occurrence are not consistent with one another either. Especially, the 

one located to the east of the Philippines is relatively weak in the fourth simulation. In 

addition, the climatological mean annual TC numbers are somewhat different among the 

simulations, with the smallest number of TCs at 18.8 in EXP1 (375 in total) and the largest at 

20.3 in EXP2 (406 in total).  

Compared to the observed climatological mean of 19.5 TCs per typhoon season during 

1982−2001 (390 in total), the ensemble mean from the four simulations gives the same 

number of TCs (19.5) per typhoon season (391 in total), which features the most realistic 

number of TC genesis over the WNP. We also calculate the climatological mean standard 

deviations between the individual simulations, the ensemble mean and the observation, and 

show that the deviation is the smallest between the ensemble mean and the observation. This 

suggests that the ensemble mean provides better downscaled information on TC genesis 

frequency than any individual simulation. 
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4. Internal variability of the downscaled WNP TC activity 

In this section, we will examine the internal variability of TC activity over the WNP 

dynamically downscaled by the iRAM with different initial conditions. Figure 5 shows the 

monthly mean WNP TC numbers for the period 1982−2001 from the simulations and the 

observation. Although the simulated frequencies in August are uniformly higher than the 

observation, there is good agreement in month-to-month variation of TC genesis frequency 

between the simulations and the observation, with an increase from July to August, peaking 

in August, and a decrease from August to October. However, the model simulations show 

considerable internal variability even though the same lateral boundary conditions and SST 

are imposed as constraints of large-scale forcing. Table 2 shows climatological monthly mean 

RMS of the WNP TC counts in the four simulations from their ensemble mean for the 

typhoon season of 1982-2001. The magnitude of the internal variability in the downscaled TC 

genesis frequency appears to vary greatly from July to October. The largest internal 

variability seems to occur in October with the RMS as large as 0.57 when the difference 

between EXP1 and EXP2 are significant at the 95% confidence level based on student-t test 

for difference between two means from two-group samples. It should also be kept in mind 

that downscale experiments for individual year are independent of each other even if the 

starting calendar date is the same. That is, the internal variability of climatological monthly 

TC counts in the simulations has uncertainty. In order to assess such uncertainty, a bootstrap 

resampling method is further used here to obtain the probability distribution function of RMS. 

In our application, new sample is monthly RMS derived from four new time series of 

monthly TC numbers during 1982-2001, which are formed by randomly choosing one 
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element from four original simulations in each year as a replacement in certain time series in 

that year. 2000 bootstrap resamples are taken, and a statistics of interest is calculated for each 

group of resamples. Three useful statistics for summarizing the probability distribution are 

the median, lower quantile and upper quantile, shown in Table 2. The last two statistics can 

be regarded as a measure of the 95% confidence interval. See Efron (1979) and Ferro et al. 

(2005) for basic introductions to the bootstrap method and a demonstration for the benefits of 

using such a statistics. The greatest median monthly RMS is found in August that also 

exhibits wider 95% confidence interval. This suggests that the largest internal variability in 

the monthly downscaled TC genesis frequency occurs most likely in August not in October. 

However, compared to RMS probability in July and September, the internal variability in 

October is still large, and its median and upper quantile reach 0.30 and 0.58, respectively. 

This is in sharp contrast to previous findings that the signal representing internal variability 

induced by initial conditions weakens with the simulation length (Wu et al. 2005; Vanvyve et 

al. 2008). This suggests that the internal variability of the dynamically downscaled TC 

activity might differ significantly from other variables and thus the downscaled TC should be 

considered as a special case. 

Figure 6 shows the interannual variability of the WNP TC numbers in each typhoon 

season for both the simulations and the observation from 1982 to 2001. In general, 

differences exist among the simulations and between the model ensemble mean and the 

observation. The spread of TC numbers among the ensemble members is quite large in some 

years. Take the year 1990 for instance. 28 TCs are produced in EXP 2, but only 14 TCs in 

EXP4, both of which show unrealistic numbers as compared to the observed 20 TCs. Table 3 
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summarizes the correlations among TC numbers in the typhoon season from the four 

individual simulations, the ensemble mean and the observation. The correlation coefficients 

among the four ensemble members vary from 0.42 to 0.77, while those between individual 

ensemble members and ensemble mean vary from 0.76 to 0.89. The agreement between the 

ensemble mean and the CMA best track data is evident with the correlation coefficient of 0.7, 

well above 99% confidence level, and higher than those between any individual simulation 

and the observation. The correlations between the simulations and the best track data of Joint 

Typhoon Warning Center (JTWC) are also calculated and show similar results (not shown).  

A quantitative estimation of the internal variability can be obtained from the RMS for the 

four simulations as defined in Eq. (1). Figure 7 shows the interannual variability of the RMS 

for the downscaled WNP TC numbers in the typhoon season from 1982 to 2001. The RMS 

varies largely from 0.8 to 5.3 with a mean of 2.5 during 1982−2001. The RMS is comparable 

to and in some instances larger than the interannual standard deviation (4.0) of the observed 

TC frequency. The maximum RMS occurs in 1990, with a value of 5.3, namely 25% of the 

TC counts in the ensemble mean. The low correlation and high RMS among the ensemble 

members imply that the downscaled TC frequency exhibits strong internal variability. 

A behavior similar to that of the downscaled TC frequency is also found in the 

downscaled TC intensity. Figure 8 shows the time series of the WNP TC power dissipation 

index (PDI) in the typhoon season for the simulations and the observation from 1982 to 2001. 

The PDI index, proposed by Emanuel (2005) to measure TC intensity, is defined as the sum 

of the cubic power of the maximum wind speed over the TC lifespan containing TC-force 

winds. The correlation coefficients between the four ensemble members and the CMA best 
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track data vary from 0.47 to 0.66, while the coefficient between the ensemble mean and the 

CMA best track data reaches 0.66. The internal variability in the downscaled TC intensity is 

evident, with an average RMS of 15% of the TC intensity in the ensemble mean. In particular, 

the maximum RMS occurs in 1982 with a value of 40% of the TC intensity in the ensemble 

mean. 

5. Sources of uncertainties 

As mentioned above, the downscaled TC genesis frequency exhibits strong internal 

variability, although the climatological mean large-scale environment is not very sensitive to 

the initial conditions. To further investigate the possible sources of uncertainties leading to 

the large internal variability in the downscaled TC activity, the uncertainties arising from the 

initial perturbations and the detection of TC-like vortices in the model are analyzed in this 

section. The diagnostic study of a particular case in 1990 with the largest variance is 

presented in the next section. 

a. Uncertainties in the initial perturbations 

The initial states in the four simulations contain unavoidable biases. We calculate the 

RMS field of SLP at 00 UTC 1 July averaged for the period 1982−2001, as shown in Fig. 9a. 

For a comparison of the degree of uncertainty, the RMS field of SLP averaged in the 20 

typhoon seasons is shown in Fig. 9b. In general, the distribution of RMS in the initial state is 

similar to that averaged in the whole season, with large RMS north of 30°N and small RMS 

in the tropics. As expected, the RMS in the initial state is significantly smaller than that 

averaged in the typhoon season, although the RMS value is still comparable to each other. 

The former is generally less than about 40% of the latter, except in a few small regions where 
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the initial RMS is somewhat large. The results imply that the uncertainty in the initial state is 

relatively small, which will be further expatiated in the next section for a case study, and that 

the other uncertainties might be dominant. 

b. Uncertainties in the detection of TC-like vortices 

In the model, disturbances satisfying all criteria outlined in section 2d are referred to as 

TCs, while a system satisfying only the first five criteria is identified as an initial TC-like 

vortex. That is, an initial TC-like vortex is defined as a detected TC-like system without 

′duration′ and ′intensity′ criteria here. Hence, a downscaled TC is mainly determined by three 

factors: the initial TC-like vortex, its intensity, and its duration. A question arises as to 

whether the large internal variability of the downscaled TC activity induced by the small 

initial perturbations results from the detection of the TC-like vortices. To address this 

question, we examine the uncertainties in the detection of TC-like vortices in all simulations. 

Figure 10a shows the interannual variability of the number of the initial TC-like vortices 

during the typhoon season for all individual simulations and the ensemble mean from 1982 to 

2001, while Fig. 10b shows the interannual variability of the numbers of the detected TC-like 

vortices lasting not less than 2 days but without the ′intensity′ criterion. It is clear that both of 

the vortex numbers are very sensitive to the initial perturbations and show pronounced 

differences among the ensemble members. Especially, the effect of the perturbations on the 

number of the detected TC-like vortices not less than 2 days but without the ′intensity′ 

criterion is more significant. In terms of the effects of the initial perturbations on the duration 

(Fig. 10b) and intensity (Fig. 6) of the TC-like vortices, the number of vortices lasting not 

less than 2 days varies by about 5%~30% of the ensemble mean, which is at about the same 
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level as the detected TC numbers. This finding indicates that the development of a TC-like 

vortex including its formation and intensification is more vulnerable to the variations in the 

initial conditions than its initial genesis stage. Moreover, about three quarters of TC-like 

vortices lasting longer than 2 days but without satisfying the ‘intensity’ criterion to be 

identified as TCs developed eventually. In this sense, the large internal variability of the 

downscaled TC genesis frequency among the simulations may result from the difference in 

the transition from less organized disturbances to the well-organized coherent TC structure. 

This transition is likely to be a highly nonlinear process and is sensitive to small differences 

in the initial conditions. 

6. A case study for 1990 with the largest variance 

As shown in Fig. 7, the internal variability in 1990 is the largest with an RMS reaching 

25% of the ensemble mean. In this section, the internal variability of the downscaled TC 

activity in year 1990 is further examined to help understand the uncertainties in the model 

simulations.  

Figure 11 shows the SLP fields at 12 UTC 26 July 1990 for the simulations and the 

NCEP reanalysis. Good agreement in the large-scale features is noted for the simulations and 

the reanalysis, with the western North Pacific subtropical high in the northeast of the model 

domain and the TC activity in the WNP. This agreement among the simulations might be 

made possible by the design that the model is forced by the same LBC. However, different 

patterns in the TC activity are evident. Two TCs occurred in EXP 2 and EXP 4, similar to 

those in the reanalysis with one at 144.3°E, 19.5°N and the other at 156.0°E, 31.0°N, while 

only one TC formed in EXP1 and EXP3. Besides the TC numbers, the four simulations also 
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show large differences in the location and intensity of the downscaled TCs on this particular 

day. This suggests that due to their highly nonlinear nature, the dynamically downscaled 

individual TC events may have quite different responses to slightly different initial conditions 

at any given time during the time integration of the model. 

Differences in the downscaled TC activity in the simulations can be further demonstrated 

in the eddy kinetic energy (EKE) fields, calculated based on the difference between the 

original state and its basic state defined as an 11-day running mean of the original state. 

Figure 12 shows the EKE at 850 hPa averaged in the typhoon season of 1990. In all 

simulations, there appears a northwest-southeast-oriented large EKE band, similar to the one 

in the reanalysis (Fig. 12f). However, both EXP3 and EXP4 show relatively greater EKE than 

the other two simulations. Moreover, the maximum EKE center in EXP4 is located to the 

northwest of those in other three simulations. These differences suggest that small 

perturbations in the initial conditions significantly change the model statistics at relatively 

small-scale motions.  

To further understand the model internal variability, we decomposed the horizontal SLP 

field into the large-scale component and the small-scale component by calculating running 

means over grid boxes. We used grid boxes of a mere 50×50 to represent waves longer than 

1000 km. When calculating the differences between the unfiltered and filtered fields, we can 

obtain components containing only scales with shorter wavelengths. Figures 13 and 14 show 

the filtered SLP anomalies from the ensemble mean in the four simulations and the filtered 

SLP in the ensemble mean and the NCEP reanalysis averaged in the typhoon season of 1990 

with wavelength longer than 1000 km and shorter than 1000 km, respectively. The 
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large-scale fields in Fig. 13 show small differences between the ensemble mean and the 

reanalysis, similar to the climatological mean SLP fields shown in Fig. 1. The anomalies 

among the individual simulations are large over the monsoon trough region and the western 

North Pacific subtropical high region. For the small-scale fields (Fig. 14), the remarkable 

differences in the simulations mainly appear the TC active region as shown in Fig. 4. 

Compared the anomaly values with the original values of SLP in Figs 13 and 14, the 

large-scale anomalies are quite small while the small-scale anomalies are comparable to the 

filtered SLP with wavelength shorter than 1000 km, indicating that the effect of the initial 

conditions on the downscaled small-scale statistics is indeed significant. 

To examine the sources of the internal variability, the differences of SLP between EXP1 

and other simulations valid at 00 UTC 1 July 1990 are shown in Fig. 15. Since EXP1 was 

initiated at 00 UTC 1 July of each year, the differences in Fig. 15 are equivalent to those 

between the reanalysis and the simulations if the additional biases induced by the 

interpolation procedure are neglected. Generally, SLP in the simulations is uniformly 1~3 hPa 

higher than that in the reanalysis except for in the area west of 110°E after some short time 

integrations. The differences of SLP in the ensemble mean are the smallest among all 

individual simulations. Further examination for other years (not shown) demonstrates that the 

magnitude of the initial differences is similar to one another. This implies that the internal 

variability of the downscaled TC activity exists independently of the amplitude of the initial 

perturbations, consistent with the results of Giorgi and Bi (2000). 

The temporal evolution of domain-averaged variance for SLP between individual 

simulations and the ensemble mean in 1990 is shown in Figs. 16a~c. The variance is 
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averaged in the region 0°−40°N and 105°E−180°. In order to compare the internal variability 

in different years, the temporal evolution of domain-averaged variance in 1985, with the 

minimum internal variability (Fig. 7), is presented in Figs. 16d~f. For the year 1990, the 

variance in individual simulations essentially oscillates around 0~36 hPa, and does not 

significantly reduce with time (Fig. 16a). The oscillation also shows a similar behavior in all 

simulations, which is tied to the synoptic scale variability, with time scales from several to 

tens of days. This is essentially due to the same level of forcing from synoptic scale 

perturbations through the lateral boundaries in all simulations. However, the magnitude of 

variance in the individual simulation differs significantly from one another at any given time. 

The inconsistency in magnitude among the simulations implies the differences in the 

day-to-day model solutions induced by the initial conditions as a result of the development of 

nonlinear atmospheric instabilities. When we compare Fig. 16a with Figs. 16b and 16c, we 

can see that horizontal scales with wavelengths longer than 1000 km contribute largely to the 

magnitude and variability of variance in the unfiled field. 

Further examinations of daily SLP field show that the internal variability on large scales 

is contributed by changes in the western North Pacific subtropical high (not shown), while 

that on small scales is greatly associated with the TC activity (e.g., location, intensity, and 

frequency). The latter can also be seen in Fig. 11, which shows a large variability of the 

downscaled TC activity in the simulations. Similar to the results in 1990, the total variability 

in 1985 is also originated from that on large scales, but it generally exhibits smaller values on 

both large scales and small scales than those in 1990. This is consistent with the smallest 

variability of the downscaled TC activity in 1985. These results suggest that the slight 
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difference in the initial conditions can change the day-to-day model solutions. The internal 

variability of the downscaled TC activity on interannual time scales is associated with the 

internal variability on both large scales and small scales in the simulations. They both 

significantly modulate the transition from less organized disturbances to the well-organized 

coherent TC structure. In this sense, the large internal variability of the downscaled TC 

activity results from the development of nonlinear atmospheric instabilities, which is 

controlled by the large scale settings of the seasons, and the random nature of TC genesis 

under favorable environmental conditions. 

7. Conclusion and discussion 

In this study, efforts have been made to demonstrate the internal variability of 

dynamically downscaled TCs over the WNP in a regional climate model. Four simulations 

have been conducted for 20 typhoon seasons from 1982 to 2001 using the IPRC regional 

atmospheric model (iRAM), which is driven by the same LBCs for the atmospheric fields and 

prescribed weekly SST. The only difference in these simulations is in the initial time delayed 

by 1 day. 

The results show that all simulations can capture the large-scale features in the WNP 

reasonably well, and can realistically reproduce the observed geographical distributions of 

TC genesis and the frequency of occurrence. However, the difference in the TC climatology 

is not negligible among the simulations, although the climatological mean large-scale features 

are quite similar. Both the local maxima in the frequencies of TC genesis and occurrence and 

the climatological mean TC numbers show differences among the simulations. Such 

differences stem mainly from the internal variability of the model atmosphere associated with 
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the slightly different initial conditions. 

As synoptic-scale storms, the formation/genesis of TCs involves complex nonlinear and 

multiscale interactions. On the seasonal timescale, the internal variability of the downscaled 

TC genesis frequency varies considerably from July to October, peaking in August and the 

second in October. This is inconsistent with previous findings that the signal representing 

internal variability induced by initial conditions weakens with time so that confidence in the 

simulations increases with the simulation length (Wu et al. 2005; Vanvyve et al. 2008). On 

the interannual timescale, the correlation coefficient between the downscaled TC genesis 

frequencies from any two of the simulations varies from 0.42 to 0.77. The RMS is 

comparable to and in some instances even larger than the interannual variability of the 

observed TC frequency, with the maximum value in 1990, amounting to 25% of the TC 

number in the ensemble mean. 

Because of the same level of synoptic variability through the lateral boundaries, all 

simulations share similar organized structures in model internal variability. The large-scale 

features display relatively small differences among the simulations, while the small-scale 

features are significantly affected by the initial conditions. The internal variability of the 

downscaled TC activity is found to be insensitive to the amplitude and the pattern of the 

initial perturbations. Our results show that the development of a TC-like vortex is more 

vulnerable to the variations in the initial conditions than its initial genesis stage. The large 

internal variability of the downscaled TC genesis frequency among the simulations may 

result mainly from the difference in the transition from less organized disturbances to the 

well-organized coherent structure. This transition is likely to be a highly nonlinear process 
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and is sensitive to the small differences in the initial conditions, as demonstrated to the 

sensitivity in the detection algorithm of TC-like vortices in the model simulations. This is in 

sharp contrast to previous studies (Giorgi and Bi 2000; Vannitsem and Chome 2005; Wu et al. 

2005; Vanvyve et al. 2008), which indicated that small perturbations in the initial conditions 

do not appear to significantly change the RCM solution.  

The large-scale environmental conditions, such as low-level vorticity, vertical wind shear, 

mid-level humidity, and thermodynamic stability, play important roles in the interannual 

variability in TC genesis frequency. A natural question arises as to whether the internal 

variability of the environmental conditions contributes to the difference in TC counts among 

the ensemble members. This is discussed by examining the differences in RMS fields in 

vertical wind shear and mid-level specific humidity. The differences in RMS fields of daily 

vertical wind shear and mid-level relative humidity between year 1990 with the largest TC 

variability and year 1985 with the smallest one are shown in Figs.17a, b. As expected, the 

RMS fields of the two environmental conditions in 1990 are larger than those in 1985 in most 

of the model domain, suggesting that the large internal variability in dynamically downscaled 

TC counts might be partially associated with the differences in large-scale environmental 

conditions. Further, we defined four large-variability years (1989, 1990, 1995 and 1997, with 

RMS ≥ 1 standard deviation) and four small-variability years (1985, 1988, 1996 and 1999, 

with RMS ≤ -1 standard deviation) according to the normalized time series of Fig. 7. The 

composite differences between large-variability and small-variability years are shown in Figs. 

17c, d. The results are similar to those from two extreme years as shown in Figs.17a, b. 

However, the differences are not statistically significant even at 90% confidence level based 
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on the Student’s t test. Since the large-scale conditions are only necessary but not sufficient 

conditions for TC genesis, the internal variability of the environmental conditions might have 

contributed to the difference in TC counts among the ensemble members. Such an effect 

could not be sufficient to explain the difference in TC genesis among the ensemble 

simulations. In this sense, the large internal variability of the downscaled TC genesis 

frequency among the ensemble simulations may result predominantly from the difference in 

the transition from less organized disturbances to the well-organized coherent TC structure. 

Our results also show that in contrast to individual simulations, the ensemble mean 

provides the better downscaled information on seasonal and interannual frequencies of TC 

genesis and occurrence. The correlation coefficient and the standard deviation between the 

ensemble mean and the observation show robust improvement although only a minimum of 

four ensemble members are considered in this study. The conclusion is consistent with the 

previous study by Chen and Lin (2011) who predicted the TC counts using a global model 

with four ensemble members. A future study is needed to address the question as to whether 

the main conclusions here would remain unchanged when more ensemble members are 

considered. Nevertheless, the single realization from a regional model in some earlier climate 

change assessment studies (Stowasser et al. 2007; Knutson et al. 2007, 2008; Bender et al. 

2010; and among others) might impose limitations since they do not take into account the 

internal variability. 
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Figure Captions 

Figure 1. Climatological mean 850 hPa relative vorticity (10-5 s-1, shaded) and sea level 

pressure (SLP, hPa, contour) fields averaged in the typhoon season of 1982−2001 from 

the simulations and the NCEP reanalysis. 

Figure 2. The same as in Figure 1, but for zonal wind vertical shear between 200 hPa and 850 

hPa (m s-1, shaded) and 700 hPa specific humidity (10-3 kg kg-1, contour). 

Figure 3. Simulated and observed frequencies of TC genesis (number per year) in each 5° lon. 

× 5° lat. grid box for a typhoon season averaged in 1982-2001. 

Figure 4. The same as in Figure 3, but for the frequency of TC occurrence (number per year). 

Figure 5. Climatological mean seasonal variability of monthly TC numbers in typhoon season 

from four simulations, ensemble mean, and CMA best track data averaged in the period 

1982-2001. 

Figure 6. Interannual variability of the downscaled TC numbers in the typhoon season from 

four simulations, ensemble mean, and CMA best track data for the period 1982−2001. 

Figure 7. Interannual variability of RMS of the WNP TC numbers in the simulations from 

their ensemble mean for the typhoon season of 1982−2001. 

Figure 8. The same as in Figure 6, but for the power dissipation index (PDI, 1012 m3 s-3) of 

simulated and observed WNP TCs. 

Figure 9. RMS fields of SLP from the ensemble mean (a) at 00 UTC 1 July and (b) in the 

typhoon season averaged in the period 1982−2001. 

Figure 10. Numbers of TC-like vortices during the typhoon season in the four simulations 

and the ensemble mean: (a) Initial TC-like vortices without duration and intensity 
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constraints; (b) TC-like vortices lasting not less than 2 days but without intensity 

constraint. 

Figure 11. SLP fields at 12 UTC 26 July 1990 in the simulations and the NCEP reanalysis. 

Figure 12. EKE at 850 hPa (m2 s-2) averaged in the typhoon season of 1990. 

Figure 13. Filtered SLP anomalies from the ensemble mean in the four simulations, and 

filtered SLP in the ensemble mean and the NCEP reanalysis with wavelength longer than 

1000 km averaged in the typhoon season of 1990. 

Figure 14. The same as in Figure 13, but for filtered SLP anomalies in all simulations and 

filtered SLP in the ensemble mean with wavelength shorter than 1000 km. 

Figure 15. Differences in SLP fields between EXP1 and other simulations at 00 UTC 1 July 

1990. 

Figure 16. Domain-averaged variance in SLP (hPa) between the individual simulations and 

their ensemble mean for the largest variance year 1990 (left) and the smallest variance 

year 1985(right): unfiltered (top), large-scale with wavelength longer than 1000 km 

(middle), and small-scale with wavelength shorter than 1000 km (bottom). 

Figure 17. Differences in the RMS fields of daily zonal wind vertical shear between 200 hPa 

and 850 hPa and 700 hPa specific humidity between year 1990 and year 1985 (a, b), and 

between the large variance and small variance years (c, d), see text for detals. 
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Table 1. Summary of the numerical simulations with different initial conditions 

Name Simulated period 

EXP1 00UTC01Jul-18UTC31Oct 

EXP2 00UTC30Jun-18UTC31Oct 

EXP3 00UTC29Jun-18UTC31Oct 

EXP4 00UTC28Jun-18UTC31Oct 

EnsM Ensemble mean: 01Jul-31Oct 

 



38 

 

Table 2．Climatological monthly mean RMS of the WNP TC counts in the simulations from 

their ensemble mean for the typhoon season of 1982-2001. Three statistics, median (0.5), 

lower quantile (0.05), and upper quantile (0.95), are used for summarizing the probability 

distribution of uncertainty in RMS based on bootstrap resampling method. 

 Original Median Lower 
quantile 

Upper 
quantile 

Jul 0.31 0.25 0.07 0.48 

Aug 0.18 0.36 0.11 0.70 

Sep 0.22 0.28 0.09 0.54 

Oct 0.57 0.30 0.09 0.58 
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Table 3．Correlation coefficients between the downscaled TC numbers in the typhoon season 

among the four simulations, the ensemble mean, and the CMA best track data for the 

period 1982−2001. The significant coefficients at 99% confidence level (±0.56) are in 

bold. 

 EXP1 EXP2 EXP3 EXP4 EnsM CMA 

EXP1 1      

EXP2 0.59 1     

EXP3 0.62 0.77 1    

EXP4 0.42 0.56 0.52 1   

EnsM 0.77 0.89 0.89 0.76 1  

CMA 0.52 0.66 0.58 0.56 0.70 1 
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Figure 1. Climatological mean 850 hPa relative vorticity (10-5 s-1, shaded) and sea level pressure 

(SLP, hPa, contour) fields averaged in the typhoon season of 1982−2001 from the 

simulations and the NCEP reanalysis. 
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Figure 2. The same as in Figure 1, but for zonal wind vertical shear between 200 hPa and 850 

hPa (m s-1, shaded) and 700 hPa specific humidity (10-3 kg kg-1, contour). 
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Figure 3. Simulated and observed frequencies of TC genesis (number per year) in each 5° lon. 

× 5° lat. grid box for a typhoon season averaged in 1982-2001. 
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Figure 4. The same as in Figure 3, but for the frequency of TC occurrence (number per year). 
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Figure 5. Climatological mean seasonal variability of monthly TC numbers in typhoon season 
from four simulations, ensemble mean, and CMA best track data averaged in the period 
1982−2001. 



45 

 

5

10

15

20

25

30

35

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

exp1 exp2
exp3 exp4
ensemble CMA

 
Figure 6. Interannual variability of the downscaled TC numbers in the typhoon season from 

four simulations, ensemble mean, and CMA best track data for the period 1982−2001. 
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Figure 7. Interannual variability of RMS of the WNP TC numbers in the simulations from 

their ensemble mean for the typhoon season of 1982-2001. 
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Figure 8. The same as in Figure 6, but for the power dissipation index (PDI, 1012 m3 s-3) of 

simulated and observed WNP TCs. 
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Figure 9. RMS fields of SLP from the ensemble mean (a) at 00 UTC 1 July and (b) in the 

typhoon season averaged in the period 1982−2001. 
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Figure 10. Numbers of TC-like vortices during the typhoon season in the four simulations 

and the ensemble mean: (a) Initial TC-like vortices without duration and intensity 

constraints; (b) TC-like vortices lasting not less than 2 days but without intensity 

constraint. 
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Figure 11. SLP fields at 12 UTC 26 July 1990 in the simulations and the NCEP reanalysis. 
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Figure 12. EKE at 850 hPa (m2 s-2) averaged in the typhoon season of 1990. 

 



52 

 

 
Figure 13. Filtered SLP anomalies from the ensemble mean in the four simulations, and 

filtered SLP in the ensemble mean and the NCEP reanalysis with wavelength longer than 

1000 km averaged in the typhoon season of 1990. 
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Figure 14. The same as in Figure 13, but for filtered SLP anomalies in all simulations and 

filtered SLP in the ensemble mean with wavelength shorter than 1000 km. 
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Figure 15. Differences in SLP fields between EXP1 and other simulations at 00 UTC 1 July 

1990. 
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Figure 16. Domain-averaged variance in SLP (hPa) between the individual simulations and 

their ensemble mean for the largest variance year 1990 (left) and the smallest variance 

year 1985(right): unfiltered (top), large-scale with wavelength longer than 1000 km 

(middle), and small-scale with wavelength shorter than 1000 km (bottom). 
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Figure 17. Differences in RMS fields of daily zonal wind vertical shear between 200 hPa and 

850 hPa and 700 hPa specific humidity between year 1990 and year 1985 (a, b), and 

between the large variance and small variance years (c, d), see text for details. 

 

 


